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Statistical complexity of simple one-dimensional spin systems
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We present exact results for two complementary measures of spatial structure generated by one-dimensional
spin systems with finite-range interactions. The first, excess entropy, measures the apparent spatial memory
stored in configurations. The second, statistical complexity, measures the amount of memory needed to opti-
mally predict the chain of spin values in configurations. These statistics capture distinct properties and are
different from existing thermodynamic quantities.@S1063-651X~97!51001-4#

PACS number~s!: 05.50.1q, 64.60.Cn, 75.10.Hk
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Thermodynamic entropy, a measure of disorder, is a
miliar quantity that is well understood in almost all statistic
mechanical contexts. It’s notable, though, that complem
tary and similarly general measures of structure and pat
are largely missing from current theory and are certainly l
well-developed. To date, ‘‘structure’’ has been handled o
case by case basis. Order parameters and structure func
for example, are typically invented to capture the signific
features in a specific phenomenon. There is no generally
cepted approach to answering relatively simple questio
such as, ‘‘How much temporal memory is used by a proc
to produce a given level of disorder?’’

In the following we adapt two measures of structure,
excess entropyE and the statistical complexityCm , to ana-
lyze the spatial configurations generated by simple spin
tems. These measures of structure are not problem-spe
they may be applied to any statistical mechanical system.
give exact results forE andCm as a function of temperature
external field, and coupling strength for one-dimensio
finite-range systems. Our results show thatE and Cm are
different from measures of disorder, such as thermodyna
entropy and temperature; ratherE andCm quantify signifi-
cant aspects of information storage and computation em
ded in spatial configurations.

In our analysis we introduce purely information theore
coordinates—a plot ofE andCm versus spatial entropy den
sity hm—known as the complexity-entropy diagram. Th
benefit of this view is that it is explicitly independent o
system parameters and so allows very different systems t
compared directly in terms of their intrinsic information pr
cessing. In past work the complexity-entropy diagram w
analyzed for a class of processes in which the set of allo
configurations changed as a function of a system control
rameter@1#. For the systems considered here, the variation
E andCm is driven instead by the ‘‘thermalization’’ of the
configuration distribution.
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Consider a one-dimensional chain of spin variab
sJ5 . . . s22 s21 s0 s1 . . . , wheresi range over a finite se
A. Divide the chain into two semi-infinite halve
by choosing a sitei as the dividing point. Denote the lef
half by sQ i[ . . . si23 si22 si21 si and the right half by
sW i[si11 si12 si13 . . . . Let Pr (si) denote the probability
that the i th variable takes on the particular valuesi and
Pr (si ,si11 , . . . ,si1L21) the joint probability over blocks of
L consecutive spins. Assuming spatial translation symme
Pr (si , . . . ,si1L21)5Pr (s1 , . . . ,sL).

Given such a distribution one measures the average
certainty of observing a givenL-spin blocksL by the Shan-
non entropy@2#

H~L ![2 (
s1PA

. . .(
sLPA

Pr ~s1 , . . . ,sL!log2Pr ~s1 , . . . ,sL!.

~1!

The spatial density of Shannon entropy of the spin confi
rations is defined byhm[ limL→`L

21H(L). hm measures the
irreducible randomness in the spatial configurations.
physical systems it is, up to a multiplicative constant, equi
lent to thermodynamic entropy density. It is also equivale
to the average of the configurations’ Kolmogorov-Chai
complexity. As such,hm measures the average length~per
spin! of the minimal universal Turing machine program r
quired to produce a typical configuration@2,3#.

The entropy density is a property of the system as
whole; only in special cases will the isolated-spin uncertai
H(1) be equal tohm . It is natural to ask, therefore, how
random the chain of spins appears when finite-length s
blocks are considered. This is given byhm(L)
[ H(L)2H(L21), the incremental increase in uncertain
in going from (L21)-blocks toL-blocks. hm(L) overesti-
mates the entropy densityhm by an amounthm(L)2hm that
indicates how much more random the finiteL blocks appear
than the infinite configurationsJ . In other words, this exces
randomness tells us how much additional information m
be gained about the configurations in order to reveal
actual per-spin uncertaintyhm . Summing up the overesti
mates one obtains the total excess entropy@4#
R1239 © 1997 The American Physical Society
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E[ (
L51

`

~hm~L !2hm!. ~2!

Informally, E is the amount~in bits!, above and beyond
hm , of apparentrandomness that is eventually ‘‘explained
by considering increasingly longer spin-blocks. This follow
from noting thatE may be expressed as the mutual inform
tion I @2# between the two semi-infinite halves of a config
ration;E5I (sQ ; sW); that is,E measures how much informa
tion one half of the spin chain carries about the other. In t
restricted senseE measures the spin system’s apparent s
tial memory. If the configurations are perfectly random
periodic with period 1, thenE vanishes. Excess entropy
nonzero between the two extremes of ideal randomness
trivial predictability.

Another, related, approach to spatial structure begins
asking a different question, ‘‘How much memory is need
to optimally predict configurations?’’ Restated, we are a
ing to model the system in such a way that the obser
configurations can be statistically reproduced. To addr
this, we must determine the effective states of the proc
how much of the left configuration must be remembered
optimally predict the right? The answer to these questi
leads us to define the statistical complexityCm @1#.

Consider the probability distribution of all possible rig
halvessW conditioned on a particular left half,sQ i at site i :
Pr(sWusQ i). These conditional probabilities allow one to op
mally predict configurations. We now use this form of co
ditional probabilities to define an equivalence relation; on
the space of all left halves; the induced equivalence cla
are subsets of the space of all allowedsQ i . We say that two
left-half configurations at different lattice sites are equival
if and only if they give rise to an identical conditional di
tribution of right-half configurations. Formally, we define th
relation; by

sQ i;sQ j iff Pr~sWusQ i !5Pr~sWusQ j ! ;sW. ~3!

The equivalence classes induced by this relation are ca
causal statesand denotedSi . Two sQ belong to same causa
state if, as measured by the probability distribution of sub
quent spins conditioned on having seen those particular
half configurations, they give rise to exactly the same kno
edge about the configurations that follow to the right.

Once the set$Si% of causal states has been identified,
can inductively obtain the probability Pr(Si) of finding the
chain in thei th causal state by observing many configu
tions. Similarly, we can obtain transition probabilitiesT be-
tween states. The set$Si% together with the dynamicT con-
stitute a model, referred to as ane-machine @1#, of the
original infinite configurations.

To predict, as one scans from left to right, the success
spins in a configuration with ane-machine, one must track in
which causal state the process is. Thus, the informatio
size of the distribution over causal states gives the ave
amount of memory needed to optimally predict the right-h
configurations. This quantity is the statistical complexity

Cm[2(
$Si %

Pr~Si !log2Pr~Si !. ~4!
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The excess entropy sets a lower bound on the statis
complexity:E<Cm @5#; that is, the memory needed to pe
form optimal prediction of the right-half configurations ca
not be lower than the mutual information between left a
right halves themselves. This relationship reflects the f
that the set of causal states is not in one-to-one corres
dence withL-block or even`-length configurations. In the
most general setting, the causal states are a reconstructi
the hidden, effective states of the process.

Note that for bothCm and E no memory is expended
trying to account for the randomness or, in this case,
thermal fluctuations present in the system. Thus, these m
sures of structural complexity depart markedly fro
Kolmogorov-Chaitin complexity which demands a determ
istic accounting for the value of every spin in a configur
tion. As noted above, the per-spin Kolmogorov-Chaitin co
plexity is hm @2,3#. Finally, note thatCm and E follow
directly from the configuration distribution; their calculatio
doesn’t require knowledge of the Hamiltonian.

As is well known, the partition function for any one
dimensional, discrete spin system with finite range inter
tions can be expressed in terms of the transfer matrixV @6#.
Using V, we have calculated exact expressions forCm and
E for such systems. In the following letuR (uL) denote the
normalized right~left! eigenvector corresponding toV’s larg-
est eigenvaluel.

The first step is to determine the causal states. Cons
an Ising system with nearest neighbor~NN! interactions. The
NN interactions and the fact that a configuration’s probab
ity is determined by the temperature and its energy me
that only the rightmost spin in the left half influences t
probability distribution of the spins in the right half. Thu
the possible causal states are in a one-to-one correspond
with the different values of a single spin.~This indicates how
this class of spin systems is a severely restricted subsete-
machines.! This observation determines an upper bound fo
spin-1/2 NN system:Cm< log2251.

To complete the determination of the causal states
must verify that conditioning on different spin values lea
to different distributions forsW; otherwise they fall into the
same equivalence class and there would be only one ca
state. This distinction is given by Eq.~3! which, in terms of
the transfer matrixV, reads

~ui
R!21Vik Þ ~uj

R!21Vjk ; iÞ j . ~5!

If Eq. ~5! is satisfied, then

Cm52uk
Luk
Rlog2~uk

Luk
R!. ~6!

@In Eq. ~6! and the following, a summation over repeat
indices is implied.# For a NN system, Eq.~6! is equivalent
to saying thatCm5H(1), the entropy associated with th
value of one spin. By determining an expression
H(L), one sees that hm is given by hm

5 log2l2l21ui
Ruk
LVkilog2@ Vki # , and thatE is given by

E52 log2l 1
1

l
ui
Ruk
LVkilog2@ Vki # 2uk

Luk
Rlog2@ uk

Ruk
L #.

~7!
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55 R1241STATISTICAL COMPLEXITY OF SIMPLE ONE- . . .
Note that these results prove an explicit version of the
equality betweenE andCm mentioned above; namely,

Cm 5 E1hm, ~8!

again assuming that Eq.~5! is satisfied@7#.
Let us illustrate the content of Eq.~5! by considering a

special case, a spin-1/2 paramagnet~PM!, where there are no
couplings between spins. Since there are no correlations
tween spins,E vanishes. The probability distribution of th
right-half configuration is independent of the left-half co
figuration. Thus, there is a single, unique distributi
Pr(sWusQ) and Eq.~5! is not satisfied. The PM has only on
causal state and soCm50 for all temperatures. This examp
shows how the process of determining causal states ens
statistical complexity measures structure and not rand
ness.

Now consider the spin-1/2, nearest-neighbor Ising sys
with Hamiltonian

H52J(
i
sisi112B(

i
si , ~9!

where, as usual,J is a parameter determining the strength
coupling between spins,B represents an external field, an
siP$11,21%.

For all temperatures except zero and infinity Eq.~5! is
satisfied and the causal states are in a one-to-one corres
dence with the values of a single spin. AtT5` the system is
identical to a paramagnet andCm and E both vanish. At
T50 the system is frozen in its spatially periodic grou
state;E5Cm5 log2P50, whereP(51) is the period of the
spatial pattern.

Using Eqs.~6! and ~8!, Fig. 1 plotsCm andE as a func-
tion of temperatureT. The coupling is ferromagnetic
(J51) and there is a nonzero external field (B50.3). As
expected, the entropy density is a monotonic increasing fu
tion of T. Somewhat less expectedly~cf. Ref. @1#!, the statis-
tical complexity also increases monotonically~until T5`).
The excess entropyE vanishes gradually in the high and lo
temperature limits.

Figure 2 presents the complexity-entropy diagram fo
ferromagnet~FM!, an antiferromagnet~AFM!, and a para-
magnet~PM!: Cm andE plotted parametrically as a functio
of hm . The diagram gives direct access to the informat

FIG. 1. Cm , E, andhm as a function ofT for the NN spin-1/2
ferromagnet.B was held at 0.30 andJ51.
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processing properties of the systems independent of con
parameters~i.e.,B, J, andT).

For the ferromagnet,E is seen to have a maximum in
region between total randomness (hm51) and complete or-
der (hm50). At low temperatures~and, hence, lowhm) most
of the spins line up with the magnetic field. At high temper
tures, thermal noise dominates and the configurations
quite random. In both regimes one half of a configurati
contains very little information about the other half. For lo
hm , the spins are fixed and so there is no information
share; for highhm , there is much information at each sit
but it is uncorrelated with all other sites. Thus, the exc
entropy is small in these temperature regimes. In between
extremes, however,E has a unique maximum at the temper
ture where spin coupling strength balances the thermal
tion. The result is a maximum in the system’s spat
memory.

For an AFM, the high temperature behavior is simila
thermal fluctuations destroy all correlations andE vanishes.
The lowT behavior is different; the ground state of the AF
consists of alternating up and down spins. The spatial c
figurations thus store one bit of information about wheth
the odd or even sites are up. As can be seen in Fig
E→1 ashm→0.

For different couplings and field strengths a range ofE
versushm relationships can be realized.E either shows a
single maximum or decreases monotonically. It is always
case, though, thatE is bounded from above by 12hm ,
which follows immediately ifCm is set equal to its maximum
value, 1, in Eq.~8!.

Given thatCm was introduced as a measure of structure
is perhaps surprising that it behaves so differently fromE.
As hm increases, one might expectCm to reach a maximum,
as doesE, and then decrease as the increasing thermaliz
merges causal states that were distinct at lower temperat
In fact,Cm increases monotonically withhm . To understand
this, recall that the causal states are the same for allT be-
tween zero and infinity. For the NN spin-1/2 Ising model, t
number of causal states remains fixed at 2. Whatdoeschange
asT is varied are the causal state probabilities. For the F

FIG. 2. The complexity-entropy diagram for a ferromagn
~FM!, an antiferromagnet~AFM!, and a paramagnet~PM!: Cm and
E plotted parametrically againsthm . For a givenJ, B was held
constant@B50.30 ~FM! andB51.8 ~AFM!# asT was varied. All
systems haveCm50 when hm51; this is denoted by the solid
square.
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as the temperature rises the distribution Pr(Si) becomes
more uniform, andCm grows. This growth continues unt
T becomes infinite, since only there do the two causal st
collapse into one, at which pointCm vanishes.

For the AFM the situation is a little different. AtT50
there are two causal states corresponding to the two sp
phases of the alternating up-down pattern. The probability
these causal states is uniform; hence we see a low temp
ture statistical complexity of 1. At high~but finite! tempera-
tures, the thermal fluctuations dominate; the antiferrom
netic order is lost, but the distribution over causal state
still relatively uniform so the statistical complexity remain
large.~As with the FM, atT5` the two causal states merg
andCm jumps to zero.! Between these extremes there is
region where the influence of the external field dominat
biasing the configurations. This is reflected in a bias in
causal state probabilities andCm dips below 1, as seen in
Fig. 2.

The tendency forCm to remain large for large values o
hm is due to a more general effect, which follows from E
~8!: Cm5E1hm . The memory needed to model a proce
depends not only on the internal memory of the process
measured byE, but also on its randomness, as measured
hm . It is important to note, however, thatCm is driven up by
thermalizationnotbecause the model attempts to account
random spins in the configuration. Rather,Cm rises withhm
because Pr(Si) becomes more uniform as the temperatu
increases.

We have discussed three complementary statistics tha
a whole capture the information processing capabilities e
bedded in spin systems. This framework has been app
previously to the symbolic dynamics of continuous-state
namical systems@1#. The work presented here is our fir
exploration of thermal systems with these tools. In the
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namical systems studied, the statistical complexity varied
a function ofhm mainly due to changes in topological con
straints on configurations. This led to changes in the num
of causal states and in their connectivity. As a result,Cm has
a unique maximum at an intermediate entropy; cf. Fig. 2
the first paper of Ref.@1#. In sharp contrast, the therma
systems examined here have the same number of ca
states for all temperatures except zero and infinity. For
TÞ0 thermal fluctuations are present: all configurations
possible and the connectivity of the causal states remains
same. This contrast points out a useful distinction betw
deterministic and stochastic systems—a distinction tha
lost by comparing these two different types of process so
in terms ofhm .

These features and other work to be reported indicate
E andCm capture properties that are different from existi
thermodynamic quantities. Comparing the PM, FM, a
AFM in terms of specific heat, for example, does not rev
the distinctions seen in Fig. 2. This issue, along with ana
ses of 2D Ising systems, spin glasses, and recurrent ne
networks, will be discussed elsewhere.

For higher dimensional systems, e.g., spins in 2D, th
are several ways to defineE andCm . One approach consid
ers an infinite vertical spin strip as a single, infinit
dimensional spin and adapts the definitions used here to
ture the causal states found when moving horizonta
Another is to use the path-automaton formalism introduc
in Ref. @8# to describe the joint distribution over spins in 2
patches. Future work will compare these approaches.
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