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Statistical complexity of simple one-dimensional spin systems
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We present exact results for two complementary measures of spatial structure generated by one-dimensional
spin systems with finite-range interactions. The first, excess entropy, measures the apparent spatial memory
stored in configurations. The second, statistical complexity, measures the amount of memory needed to opti-
mally predict the chain of spin values in configurations. These statistics capture distinct properties and are
different from existing thermodynamic quantiti¢$1063-651X%97)51001-4

PACS numbegps): 05.50-+q, 64.60.Cn, 75.10.Hk

Thermodynamic entropy, a measure of disorder, is a fa- Consider a one-dimensional chain of spin variables
miliar quantity that is well understood in almost all statistical §= ... s_» s_1 59 S; ..., wheres; range over a finite set
mechanical contexts. It's notable, though, that complemenA. Divide the chain into two semi-infinite halves
tary and similarly general measures of structure and patterby choosing a sité as the dividing point. Denote the left
are largely missing from current theory and are certainly leshalf by S= ... s._35_,5_1 S and the right half by
well-developed. To date, “structure” has been handled on & =s,,; s;., S;.3 ... . Let Pr ) denote the probability
case by case basis. Order parameters and structure functiofisat theith variable takes on the particular valse and
for example, are typically invented to capture the significantPr (s;,s;; 1, . . . .S+ —1) the joint probability over blocks of
features in a specific phenomenon. There is no generally at- consecutive spins. Assuming spatial translation symmetry,
cepted approach to answering relatively simple question®r (s;, ..., Si+-1)=Pr (s1, ... ,8.)-
such as, “How much temporal memory is used by a process Given such a distribution one measures the average un-
to produce a given level of disorder?” certainty of observing a giveh-spin blocks" by the Shan-

In the following we adapt two measures of structure, thenon entropy{2]
excess entropf and the statistical complexit¢ , , to ana-
lyze the spatial configurations generated by simple spin syg4(L)=— >, . 2 Pr(s;,...,s)log,Pr(sq, ...,s).
tems. These measures of structure are not problem-specific; sieAd s ed
they may be applied to any statistical mechanical system. We @
give exact results foE andC,, as a function of temperature, The spatial density of Shannon entropy of the spin configu-
external field, and Coupllng strength for one-dimensional aiions is defined bh”_hmbm “1H(L). h, measures the

finite-range systems. Our results show tBatand C, are  jrreducible randomness in the spatial conf|gurat|ons For
different from measures of disorder, such as thermodynam|5hys,ca| systems it is, up to a multiplicative constant, equiva-

entropy and temperature; rathérand C,, quantify signifi-  |ent to thermodynamic entropy density. It is also equivalent
cant aspects of information storage and computation embedo the average of the configurations’ Kolmogorov-Chaitin
ded in spatial configurations. complexity. As suchh, measures the average lengfer

In our analysis we introduce purely information theoretic spin) of the minimal universal Turing machine program re-
coordinates—a plot of andC,, versus spatial entropy den- quired to produce a typical configurati®,3].
sity h,—known as the complexity-entropy diagram. The The entropy density is a property of the system as a
benefit of this view is that it is explicitly independent of whole; only in special cases will the isolated-spin uncertainty
system parameters and so allows very different systems to bé(1) be equal toh,. It is natural to ask, therefore, how
compared directly in terms of their intrinsic information pro- random the chain of spins appears when finite-length spin
cessing. In past work the complexity-entropy diagram waslocks are considered. This is given by, (L)
analyzed for a class of processes in which the set of allowee: H(L) —H(L—1), the incremental increase in uncertainty
configurations changed as a function of a system control pan going from (L—1)-blocks toL-blocks.h,(L) overesti-
rameter[1]. For the systems considered here, the variation inmates the entropy density, by an amounh (L) —h,, that
E andC,, is driven instead by the “thermalization” of the indicates how much more random the finiteblocks appear
configuration distribution. than the infinite configuratior§ . In other words, this excess
randomness tells us how much additional information must
be gained about the configurations in order to reveal the
*Electronic address: chaos@gojira.berkeley.edu actual per-spin uncertaintly, . Summing up the overesti-
"Electronic address: dfeldman@landau.ucdavis.edu mates one obtains the total excess entrigdy
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© The excess entropy sets a lower bound on the statistical
E= E (h,(L)—hy). (2 complexity: E<C,, [5]; that is, the memory needed to per-

L=1 form optimal prediction of the right-half configurations can-
not be lower than the mutual information between left and
right halves themselves. This relationship reflects the fact
that the set of causal states is not in one-to-one correspon-
dence withL-block or evene-length configurations. In the

Informally, E is the amount(in bits), above and beyond
h,, of apparentrandomness that is eventually “explained”
by considering increasingly longer spin-blocks. This follows

from noting thate may be expressed as the mutual informa-most eneral setting, the causal states are a reconstruction of
tion | [2] between the two semi-infinite halves of a configu- 9 ng,
the hidden, effective states of the process.

r_ation;EzI(§; S); thqt is,E.measgres how much informa—l Note that for bothC, and E no memory is expended
tion one half of the spin chain carries about the other. In th'strying to account for tﬁe randomness or. in this case. for

restricted sens& measures the spin system's apparent Spagarmg fluctuations present in the system. Thus, these mea-
tial ‘memory. If the conﬁgurauon; are perfectly random Ofsures of structural complexity depart markedly from
periodic with period 1, therE vanishes. Excess entropy is y o mogorov-Chaitin complexity which demands a determin-
nonzero between the two extremes of ideal randomness ang;. accounting for the value of every spin in a configura-

trivial predictability. . . tion. As noted above, the per-spin Kolmogorov-Chaitin com-
Another, related, approach to spatial structure begins b}SIexity is h, [2,3]. Finally, note thatC, and E follow

asking a different question, "How much memory is neededyj oty from the configuration distribution; their calculation
to optimally predict configurations?” Restated, we are ask-, oesn't require knowledge of the Hamiltonian.
ing to model the system in such a way that the observed Aq is well known, the partition function for any one-

configurations can be statistically reproduced. To addresgimensional, discrete spin system with finite range interac-

this, we must determine the effective states of the Proces$ions can be expressed in terms of the transfer matrig]
how much of the left configuration must be remembered t i

) . . . cUsing V, we have calculated exact expressions @r and
optimally predict the right? The answer to these questions: ¢ "« eh systems. In the following lef® (u”) denote the

leads us to define the s.tfcxt|st|_ca|_ Comp'em% [1] . . normalized righ{left) eigenvector corresponding Y6s larg-
Con§|der the probability distribution of all possible right est eigenvalua.
halvess conditioned on a particular left half; at sitei: The first step is to determine the causal states. Consider
Pr(s|s;). These conditional probabilities allow one to opti- an Ising system with nearest neighl§biN) interactions. The
mally predict configurations. We now use this form of con-NN interactions and the fact that a configuration’s probabil-
ditional probabilities to define an equivalence relatieron ity is determined by the temperature and its energy means
the space of all left halves; the induced equivalence classaRat only the rightmost spin in the left half influences the
are subsets of the space of all allongdWe say that two probability distribution of the spins in the right half. Thus,
left-half configurations at different lattice sites are equivalentthe possible causal states are in a one-to-one correspondence
if and only if they give rise to an identical conditional dis- with the different values of a single spifThis indicates how
tribution of right-half configurations. Formally, we define the this class of spin systems is a severely restricted subset of

relation ~ by machines. This observation determines an upper bound for a
. . o . spin-1/2 NN systemC , <log,2=1.
si~s; iff Pr(s|s)=Pr(s|s;) Vs. (3 To complete the determination of the causal states we

] ) . ) must verify that conditioning on different spin values leads
The equivalence classes '”duce‘i by this relation are call% different distributions fors; otherwise they fall into the
causal statesnd denoteds;. Two s belong to same causal same equivalence class and there would be only one causal

state if, as measured by the probability distribution of subsestate. This distinction is given by E¢B) which, in terms of
quent spins conditioned on having seen those particular lefihe transfer matriz/. reads

half configurations, they give rise to exactly the same knowl-
edge about the configurations that follow to the right. Ry—1y/. Ry—1y/. .

Once the sefS;} of causal states has been identified, we (U5 Vi # (U7 Vi VI#. ©
can inductively obtain the probability R¥() of finding the
chain in theith causal state by observing many configura-
tions. Similarly, we can obtain transition probabiliti€sbe-
tween states. The séf;} together with the dynami@ con-
stitute a model, referred to as ammachine[1], of the
original infinite configurations. [In Eq. (6) and the following, a summation over repeated

To predict, as one scans from left to right, the successivédices is implied, For a NN system, Eq(6) is equivalent
spins in a configuration with asmachine, one must track in t0 saying thatC,=H(1), the entropy associated with the
which causal state the process is. Thus, the informationa/alue of one spin. By determining an expression for
size of the distribution over causal states gives the averagd(L), one sees that h, is given by h,
amount of memory needed to optimally predict the right-half=10g,A—\"*uRugVyilog Vi 1 , and thatE is given by
configurations. This quantity is the statistical complexity

If Eq. (5) is satisfied, then

C.= — UUg10g,(Ucui). ®)

1
E=—log,\ + -ufugViilogsl Vii ] —uiuglog,l ugtug 1.

C,=—2, PiS)log:Pr(S)). (4)
{Sit @
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FIG. 1.C,, E, andh, as a function ofT for the NN spin-1/2 ) i
ferromagnetB was held at 0.30 and=1. FIG. 2. The complexity-entropy diagram for a ferromagnet
(FM), an antiferromagnefAFM), and a paramagnéPM): C,, and

Note that these results prove an explicit version of the int Plotted parametrically against, . For a givenJ, B was held
constanf{B=0.30 (FM) andB=1.8 (AFM)] as T was varied. All

equality betweerk andC,, mentioned above; namely, systems haveC,=0 whenh,=1; this is denoted by the solid
CM = E+ h,uv (8) square.

again assuming that E¢p) is satisfied 7]. processing properties of the systems independent of control
Let us illustrate the content of E@5) by considering a parametersi.e., B, J, andT).
special case, a spin-1/2 paramagi¥l), where there are no For the ferromagnett: is seen to have a maximum in a
couplings between spins. Since there are no correlations beegion between total randomnesds, & 1) and complete or-
tween spinsE vanishes. The probability distribution of the der (h,=0). At low temperaturegand, hence, lovi,) most
right-half configuration is independent of the left-half con- of the spins line up with the magnetic field. At high tempera-
figuration. Thus, there is a single, unique distributiontures, thermal noise dominates and the configurations are
Pr(s|s) and Eq.(5) is not satisfied. The PM has only one quite random. In both regimes one half of a configuration
causal state and €0, =0 for all temperatures. This example contains very little information about the other half. For low
shows how the process of determining causal states ensurBs. the spins are fixed and so there is no information to
statistical complexity measures structure and not randonshare; for highh ,, there is much information at each site,
ness. but it is uncorrelated with all other sites. Thus, the excess
Now consider the spin-1/2, nearest-neighbor Ising systerg@ntropy is small in these temperature regimes. In between the
with Hamiltonian extremes, howeveE has a unique maximum at the tempera-
ture where spin coupling strength balances the thermaliza-
tion. The result is i [ ' i
H:_‘]Z Si5i+1—|32i . ) oy, a maximum in the system’s spatial
For an AFM, the high temperature behavior is similar;
where, as usuall is a parameter determining the strength ofthermal fluctuations destroy all correlations g@ad/anishes.
coupling between sping represents an external field, and The lowT behavior is different; the ground state of the AFM
sie{+1,—1}. consists of alternating up and down spins. The spatial con-
For all temperatures except zero and infinity E6). is  figurations thus store one bit of information about whether
satisfied and the causal states are in a one-to-one correspdhe odd or even sites are up. As can be seen in Fig. 2,
dence with the values of a single spin. A&« the systemis E—1 ash,—0.
identical to a paramagnet ar@, and E both vanish. At For different couplings and field strengths a rangeEof
T=0 the system is frozen in its spatially periodic groundversush, relationships can be realize& either shows a
state;E=C,=log,P=0, whereP(=1) is the period of the single maximum or decreases monotonically. It is always the
spatial pattern. case, though, thakE is bounded from above by -ih,,,
Using Egs.(6) and(8), Fig. 1 plotsC, andE as a func-  which follows immediately ifC , is set equal to its maximum
tion of temperatureT. The coupling is ferromagnetic value, 1, in Eq(8).
(J=1) and there is a nonzero external fiel#=0.3). As Given thatC,, was introduced as a measure of structure, it
expected, the entropy density is a monotonic increasing funds perhaps surprising that it behaves so differently fiém
tion of T. Somewhat less expectedlgf. Ref.[1]), the statis- As h,, increases, one might expect, to reach a maximum,
tical complexity also increases monotonicaflyntii T=«).  as doesE, and then decrease as the increasing thermalizing
The excess entropy vanishes gradually in the high and low merges causal states that were distinct at lower temperatures.
temperature limits. In fact, C,, increases monotonically with,, . To understand
Figure 2 presents the complexity-entropy diagram for athis, recall that the causal states are the same fof &le-
ferromagnet(FM), an antiferromagnetAFM), and a para- tween zero and infinity. For the NN spin-1/2 Ising model, the
magnet(PM): C, andE plotted parametrically as a function number of causal states remains fixed at 2. \Mosischange
of h,. The diagram gives direct access to the informationasT is varied are the causal state probabilities. For the FM,
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as the temperature rises the distribution $r(becomes namical systems studied, the statistical complexity varied as
more uniform, andC,, grows. This growth continues until @ function ofh, mainly due to changes in topological con-
T becomes infinite, since only there do the two causal state&{raints on configurations. This led to changes in the number
collapse into one, at which poil@, vanishes. of cqusal states and in thellr connectivity. As a ree:tl);,has .
For the AEM the situation is a little different. AF=0 a unigue maximum at an intermediate entropy; cf. Fig. 2 in

there are two causal states corresponding to the two spatifle tf'rSt paper of dRﬁf[l]' hln sh?hrp contrast, thbe thefrmal |
phases of the alternating up-down pattern. The probability opYSIEMS €xamined hereé have theé same number ol causa
these causal states is uniform; hence we see a low temper tates for all temperatures except zero and infinity. For all

ture statistical complexity of 1. At higtbut finite) tempera- # 0 thermal fluctuations are present: all configurations are
plexity ot L. 9 ] np possible and the connectivity of the causal states remains the
tures, the thermal fluctuations dominate; the antiferromag

Jsame. This contrast points out a useful distinction between
Yeterministic and stochastic systems—a distinction that is
lost by comparing these two different types of process solely
in terms ofh,, .

still relatively uniform so the statistical complexity remains
large.(As with the FM, afT =« the two causal states merge

anq Cu jl;mps tLO ;e;lc). Betwe?rt]hthes? extrleptlaj éher_e 'St & These features and other work to be reported indicate that
region where the influence ol the external ield dominatesg andC,, capture properties that are different from existing
biasing the configurations. This is reflected in a bias in thqhermodynamic quantities. Comparing the PM, FM, and
'c:{;\usgl state probabilities ar@, dips below 1, as seen in - Apy in terms of specific heat, for example, does not reveal
'9. h. d ¢ in | for | | ¢ the distinctions seen in Fig. 2. This issue, along with analy-
The tendency foC,, to remain large for large values of goq of 7p |sing systems, spin glasses, and recurrent neural
hM.IS du_e to a more general effect, which follows from Eq. honyorks, will be discussed elsewhere.
(8: C,=E+h,. The memory needed to model a process pqr higher dimensional systems, e.g., spins in 2D, there
depends not only on the mFernaI memory of the process, aga several ways to defifieandC,, . One approach consid-
measured by, but also on its randomness, as measured by, an infinite vertical spin strip as a single, infinite-
h, . Itis important to note, however, th&, is driven up by gimensjonal spin and adapts the definitions used here to cap-
thermalizatiomot because the model attempts to account for,re the causal states found when moving horizontally.

random spins in the configuration. Rath€, rises withh,  apqther is to use the path-automaton formalism introduced

because Pt§) becomes more uniform as the temperatureiy Ref. [8] to describe the joint distribution over spins in 2D

increases. . patches. Future work will compare these approaches.
We have discussed three complementary statistics that as

a whole capture the information processing capabilities em- We thank Richard T. Scalettar for many helpful com-

bedded in spin systems. This framework has been applieshents. This work was supported at UC Berkeley by ONR
previously to the symbolic dynamics of continuous-state dy-Grant No. N00014-95-1-0524 and AFOSR Grant No. 91-
namical system$l]. The work presented here is our first 0293 and at the Santa Fe Institute by NASA-Ames Contract
exploration of thermal systems with these tools. In the dyNo. NCC2-840 and ONR Grant No. NO0014-95-1-0975.
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